APi Detectors

home
@-mail
print
Login
Astroparticelle - NewsAPi News
logo

Cosmic Rays Detector AMD 16

Rivelatore di muoni e sciami elettrofotonici nuovo prototipo

Questo nuovo rivelatore è stato concepito per fare misure di assorbimento sott'acqua, un esperimento che abbiamo in programma di fare da diversi anni.

 

AMD16 cosmic rays and gamma detector
Rivelatore di raggi cosmici AMD16.

 

Lo strumento utilizza 4 sensori GMT o tubi Geiger-Muller, due tubi sovietici ultra collaudati, tipo SBM19 e due tubi di produzione cinese tipo J305. Le dimensioni fisiche di questi tubi sono praticamente identiche, mentre le caratteristiche elettriche risultano molto differenti, differente anche i livelli di polarizzazione e di sensibilità.



Setup dello strumento.


Per il fatto della differenza elettrica tra i sensori, il setup dello strumento è stato particolarmente lungo e complesso. L'intenzione era di produrre due canali di misura principali, uno per rivelare i muoni e uno per rivelare le cascate elettrofotoniche (raggi gamma ed elettroni) nella materia e prodotte da diverse interazioni "terziarie". Lo scopo è stato raggiunto utilizzando due tubi in posizione verticale con il segnale di coincidenza tra di essi per la misura dei muoni; mentre per la misura degli sciami gamma si considera la coincidenza di tre GMT, quello superiore insieme al segnale dei due GMT laterali. Questa configurazione a "lambda" deriva dal tipo di misure eseguito dai ricercatori come Bruno Rossi con Giuseppe Occhialini e Patrick Blackett e anche Hartland Snyder e altri, per rivelare sciami secondari di particelle nella materia prodotti per interazione coi raggi cosmici.


AMD16 cosmic rays and gamma detector
Rivelatore di raggi cosmici AMD16 in funzione.


I dati sono registrati da un data logger Arduino su scheda SD per un totale di 6 canali (4 GMT = gamma e particelle cariche, Muoni e sciami gamma) Le prove iniziali sono molto buone e promettenti. Il rate di muoni è quello atteso per strumenti di questo tipo, mentre per la coincidenza tra tre GMT non abbiamo precedenti dati su cui fare confronti. La comparazione tra due misure, una a cielo libero, e una posizionando una lastra di pochi mm di piombo sopra al rivelatore conferma la potenzialità di misurare gli sciami di particelle (prevalentemente elettroni e raggi gamma) prodotte all'interno della materia.

 


Differenza tra la densità di muoni, con e senza lastra di piombo.
Con la lastra di piombo si nota una sensibile diminuzione nelle frequenze maggiori.


Lo scopo dell'esperimento che sarà prodotto sott'acqua sarà quello di verificare l'assorbimento stesso della radiazione cosmica nell'acqua e la possibile produzione di sciami elettrofotonici nei primi centimetri o decine di centimetri sotto la superficie dell'acqua.


Differenza tra la densità di eventi shower, con e senza lastra di piombo.
Con la lastra di piombo si nota un sostanziale aumento nelle frequenze maggiori.


Sott’acqua i muoni hanno un potere di penetrazione enorme quindi per basse profondità vengono praticamente attenuati solo quelli a bassa energia. Adroni ed elettroni vengono frenati nei primi cm di acqua, perciò non sono rilevabili. I raggi gamma possono penetrare parecchie decine di cm a seconda dell’energia. La relazione di assorbimento dei fotoni nella materia è conosciuta come legge di Lambert. L’intensità è ridotta in base a: I= I0 * e^-α*d dove alfa è il coefficiente lineare di attenuazione o assorbimento (1/cm) d è distanza (in cm), alfa a sua volta è: α=µ*ρ, dove µ = coefficiente di massa e ρ è la densità[1]. µ (=α/ρ) è chiamato coefficiente di attenuazione di massa e si misura in cm2/g (si ricava da tabelle). La relazione si può scrivere come I=I0*e^-µ*d*ρ, sostituendo d*ρ con X che è la profondità di interazione (o interaction depth - g/cm2) si ha: I=I0*e^-µ*X.

Al momento sono in fase alcune simulazioni ed esperimenti per valutare le potenzialità di questo piccolo ma efficiente strumento.

[1] L'utilizzo delle lettere greche per indicare queste quantità non è uniforme tra i vari autori e libri specialistici, ad esempio Domenico Pacini utilizzava lambda minuscolo in vece di alfa, probabilmente per indicare l’interation mean free path (la distanza media in cm percorsa da una particella tra una interazione e l’altra).

M.A.

 


To the top

Astroparticelle - schegge per lo sviluppo della conoscenza...


⚛ In primo piano

A podcast on cosmic rays (by NotebookLM 23.10.2024

Il primo podcast su astroparticelle.it per arricchire un argomento sempre attuale. NotebookLM è l'ennesimo tool di intelligenza artificiale per ricerca scientifica, ma la sua funzione sconvolgente è che crea in pochi istanti podcast realistici basati su articoli caricati nel proprio account, per ora l'audio è solamente in lingua inglese. Non è ancora perfetto, ma rappresenta uno strumento che potrà arricchire siti web di tutte le risme e potrà essere utilizzato anche come complemento per la didattica...

cosmic rays

 



Muon Monitor in real time



News dal Mondo


Ricercatori trovano una possibile soluzione al puzzle dei muoni dei raggi cosmici 28.11.2024

Rispetto ai risultati dei modelli di fisica standard derivati ​​da esperimenti con acceleratori di particelle, come quelli del Large Hadron Collider e del Super Proton Synchrotron del CERN, sulla superficie si osservano troppi muoni cosmici. Per energie dei muoni comprese tra 6 e 16 exa-elettronvolt (da 1,0 a 2,5 joule!), il flusso di muoni è dal 30% al 60% più alto del previsto. Nel tentativo di spiegare questo eccesso, i ricercatori hanno utilizzato il modello di condensazione dei gluoni descritto dalla cromodinamica quantistica QCD per analizzare la collisione iniziale delle cascate nel tentativo di risolvere il problema dell'eccesso di muoni...

muons

Fonte: Phys.org


La collaborazione H.E.S.S. rileva gli elettroni e i positroni dei raggi cosmici più energetici mai osservati 25.11.2024

Gli scienziati del CNRS, un consorzio di università tedesche, e del Max-Planck-Institut für Kernphysik che lavorano presso l'osservatorio H.E.S.S. hanno recentemente identificato elettroni e positroni con le energie più elevate mai registrate sulla Terra. Queste forniscono la prova di processi cosmici che emettono quantità colossali di energia, le cui origini sono ancora sconosciute. La scoperta sarà pubblicata sulla rivista Physical Review Letters.

cosmic rays

Fonte: CNRS



☄ Il libro: Costruire un rivelatore di muoni a GMT

Il telescopio per i raggi cosmici

In tutte le librerie online! - una guida per chi vuole cimentarsi nella costruzione di un rivelatore di particelle elementari e toccare con mano la fisica dei raggi cosmici e l’astronomia, due campi distinti e unificati dalla fisica delle astroparticelle...

Libro


Area riservata

Accedi | Registrati

x

Iscriviti

Per ricevere aggiornamenti periodici inviaci la tua email.

oppure registrati

Questo modulo serve solo come iscrizione alle newsletter, per accedere all'area riservata è necessario registrarsi.

INFN

CERN LHCF

supernova alert

EOS

supernova alert