APi Detectors

home
@-mail
print
Login
Astroparticelle - NewsAPi News
logo

Cosmic Rays Detector AMD 16

Rivelatore di muoni e sciami gamma nuovo prototipo

Questo nuovo rivelatore è stato concepito per fare misure di assorbimento sott'acqua, un esperimento che abbiamo in programma di fare da diversi anni.

 

AMD16 cosmic rays and gamma detector
Rivelatore di raggi cosmici AMD16.

 

Lo strumento utilizza 4 sensori GMT o tubi Geiger-Muller, due tubi sovietici ultra collaudati, tipo SBM19 e due tubi di produzione cinese tipo J305. Le dimensioni fisiche di questi tubi sono praticamente identiche, mentre le caratteristiche elettriche risultano molto differenti, differente anche i livelli di polarizzazione e di sensibilità.



Setup dello strumento.


Per il fatto della differenza elettrica tra i sensori, il setup dello strumento è stato particolarmente lungo e complesso. L'intenzione era di produrre due canali di misura principali, uno per rivelare i muoni e uno per rivelare i raggi gamma prodotti da diverse interazioni "terziarie". Lo scopo è stato raggiunto utilizzando due tubi in posizione verticale con il segnale di coincidenza tra di essi per la misura dei muoni; mentre per la misura degli sciami gamma si considera la coincidenza di tre GMT, quello superiore insieme al segnale dei due GMT laterali. Questa configurazione a "lambda" deriva dal tipo di misure eseguito dai ricercatori come Bruno Rossi con Giuseppe Occhialini e Patrick Blackett e anche Hartland Snyder e altri, per rivelare sciami secondari di particelle nella materia prodotti per interazione coi raggi cosmici.


AMD16 cosmic rays and gamma detector
Rivelatore di raggi cosmici AMD16 in funzione.


I dati sono registrati da un data logger Arduino su scheda SD per un totale di 6 canali (4 GMT = gamma e particelle cariche, Muoni e sciami gamma) Le prove iniziali sono molto buone e promettenti. Il rate di muoni è quello atteso per strumenti di questo tipo, mentre per la coincidenza tra tre GMT non abbiamo precedenti dati su cui fare confronti. La comparazione tra due misure, una a cielo libero, e una posizionando una lastra di pochi mm di piombo sopra al rivelatore conferma la potenzialità di misurare gli sciami di particelle (prevalentemente raggi gamma) prodotte all'interno della materia.

 


Differenza tra la densità di muoni, con e senza lastra di piombo.
Con la lastra di piombo si nota una sensibile diminuzione nelle frequenze maggiori.


Lo scopo dell'esperimento che sarà prodotto sott'acqua sarà quello di verificare l'assorbimento stesso della radiazione cosmica nell'acqua e la possibile produzione di sciami gamma nei primi centimetri o decine di centimetri sotto la superficie dell'acqua.


Differenza tra la densità di eventi gamma, con e senza lastra di piombo.
Con la lastra di piombo si nota un sostanziale aumento nelle frequenze maggiori.


Sott’acqua i muoni hanno un potere di penetrazione enorme quindi per basse profondità vengono praticamente attenuati solo quelli a bassa energia. Adroni ed elettroni vengono frenati nei primi cm di acqua, perciò non sono rilevabili. I raggi gamma possono penetrare parecchie decine di cm a seconda dell’energia. La relazione di assorbimento dei fotoni nella materia è conosciuta come legge di Lambert. L’intensità è ridotta in base a: I= I0 * e^-α*d dove alfa è il coefficiente lineare di attenuazione o assorbimento (1/cm) d è distanza (in cm), alfa a sua volta è: α=µ*ρ, dove µ = coefficiente di massa e ρ è la densità[1]. µ (=α/ρ) è chiamato coefficiente di attenuazione di massa e si misura in cm2/g (si ricava da tabelle). La relazione si può scrivere come I=I0*e^-µ*d*ρ, sostituendo d*ρ con X che è la profondità di interazione (o interaction depth - g/cm2) si ha: I=I0*e^-µ*X.

Tramite tale relazione si può vedere che per esempio un fotone di 20 MeV riduce la sua energia a 20 keV (1000 volte) attraversando uno spessore d’acqua di 3.83 m!

Al momento sono in fase alcune simulazioni ed esperimenti per valutare le potenzialità di questo piccolo ma efficiente strumento.

[1] L'utilizzo delle lettere greche per indicare queste quantità non è uniforme tra i vari autori e libri specialistici, ad esempio Domenico Pacini utilizzava lambda minuscolo in vece di alfa, probabilmente per indicare l’interation mean free path (la distanza media in cm percorsa da una particella tra una interazione e l’altra).

M.A.

 


To the top

Astroparticelle - schegge per lo sviluppo della conoscenza...


⚛ In primo piano

AMD16 per muoni e sciami gamma 28.07.2022

Questo nuovo rivelatore è stato concepito per fare misure di assorbimento sott'acqua, un esperimento che abbiamo in programma di fare da diversi anni. Le prove iniziali sono molto buone e promettenti. Il rate di muoni è quello atteso per strumenti di questo tipo, mentre per la coincidenza tra tre GMT col fine di rilevare sciami, non abbiamo precedenti dati su cui fare confronti. La comparazione tra due misure, una a cielo libero, e una posizionando una lastra di pochi mm di piombo sopra al rivelatore conferma la potenzialità di misurare gli sciami di particelle (prevalentemente raggi gamma) prodotti all'interno della materia...




Muon Monitor in real time



News dal Mondo


Sincronizzazione oraria coi muoni cosmici 13.05.2022

La sincronizzazione precisa dell'ora è una tecnica essenziale per diversi sistemi scientifici ed economici. I segnali di sincronizzazione dell'ora basati sul sistema di posizionamento globale (GPS) non sono sempre disponibili o sono disponibili solo in parte in ambienti interni, sotterranei e subacquei. Come soluzione, gli scienziati dell'Università di Tokyo hanno introdotto il sincronizzazione dell'ora cosmica (CTS) che funziona in base agli sciami estesi dei raggi cosmici. Ciò potrebbe portare a sincronizzazioni accurate sotto il suolo e anche sott'acqua. Il professor Hiroyuki Tanaka di Muographix presso l'Università di Tokyo ha ideato e testato un modo per sincronizzare più dispositivi. La sincronizzazione del tempo cosmico (CTS) funziona grazie ai muoni. I muoni cosmici viaggiano quasi alla velocità della luce, raggiungendo la superficie quasi istantaneamente, penetrando facilmente nell'acqua o nella roccia e diffondendosi per alcuni chilometri quadrati. I dispositivi CTS possono comunicare tra loro e sincronizzare i loro orologi in base a quando si è verificato l'evento dei raggi cosmici trasmettendo queste informazioni...

raggi cosmici

Fonte: 1, 2

 


I raggi cosmici su Marte e futuri habitat marziani (19.04.2022)

Tramite un simulatore all'avanguardia (basato sul metodo di Monte Carlo) sono state simulate le interazioni delle particelle cosmiche con l'atmosfera e il terreno marziano. Marte non ha un campo magnetico intrinseco e le particelle di raggi cosmici galattici (GCR) possono propagarsi direttamente e interagire con la sua atmosfera prima di raggiungere la superficie e il sottosuolo. Tuttavia, Marte ha molte alte montagne e crateri a bassa quota in cui lo spessore atmosferico può essere più di 10 volte diverso da un caso all'altro. E' stato trovato che pressioni superficiali più elevate possono ridurre efficacemente il contributo di ioni pesanti sulla radiazione, in particolare la quantità di radiazione assorbita biologicamente. Tuttavia, una schermatura potenziata (sia dall'atmosfera che dal materiale ricavato dal suolo) può aumentare considerevolmente la produzione di neutroni secondari che contribuiscono in modo significativo alla dose efficace di radiazione assorbita. Infatti, sia il flusso di neutroni che la dose effettiva raggiungono il picco a circa 30 cm sotto la superficie. Questa è una preoccupazione fondamentale, quando si volesse utilizzare il materiale di superficie marziano per mitigare i rischi di radiazioni. Sono state quindi calcolate alcune profondità di schermatura ideali (strati di materiale), a diverse pressioni superficiali durante varie condizioni di modulazione eliosferica.

Fonte: AGU



☄ Il libro: Costruire un rivelatore di muoni a GMT

Il telescopio per i raggi cosmici

In tutte le librerie online! - una guida per chi vuole cimentarsi nella costruzione di un rivelatore di particelle elementari e toccare con mano la fisica dei raggi cosmici e l’astronomia, due campi distinti e unificati dalla fisica delle astroparticelle...

Libro


Area riservata

Accedi | Registrati

x

Iscriviti

Per ricevere aggiornamenti periodici inviaci la tua email.

oppure registrati

Questo modulo serve solo come iscrizione alle newsletter, per accedere all'area riservata è necessario registrarsi.

INFN

CERN LHCF

supernova alert

EOS

supernova alert