Per verificare il buon funzionamento dei rivelatori di raggi cosmici, un esperimento sempre valido è quello di portarli ad alta quota e verificare l'andamento in funzione dell'altitudine. Tuttavia il rivelatore in questione è stato progettato per uno scopo preciso che è quello di verificare la formazione di eventuali sciami di particelle (gamma) sotto spessori di materia e presumibilmente anche sotto la superficie dell'acqua.
Il passo del Furka location per James Bond.
Furka pass
Il passo del Furka è una rinomata località della svizzera tedesca, location del film "Goldfinger" della serie James Bond 007 interpretato da Sean Connery (1964). Il passo si trova in una stupenda cornice alpina collegato col passo del Grimsel e del San Gottardo. La sua quota è di circa 2400 metri e poco più in basso c'è un altro pezzo di storia che è l'Hotel Belvedere. Di fronte all'hotel si trova il ghiacciaio del Rodano (Rhone in svizzero), il secondo per estensione durante l'ultima era glaciale, dopo l'Aletch, ora invece diventato uno dei minori. Il ghiacciaio del Rodano alimenta l'omonimo fiume e il fronte del ghiacciaio è caratterizzato da una grotta artificiale, l'Ice Grotto che dà la possibilità di immergersi letteralmente sotto alla superficie del ghiacciaio.
L'idea di base era di utilizzare il ghiaccio al posto dell'acqua come test per lo strumento, dato che il ghiaccio ha una densità di poco inferiore a quella dell'acqua. Le simulazioni matematiche suggerivano che fino a un metro di spessore di acqua (o ghiaccio), il rivelatore avrebbe potuto rivelare eventuali sciami di particelle gamma, per interazione tra i raggi cosmici e l'acqua stessa. La sorpresa è che lo spessore di ghiaccio sovrastante la grotta è in media superiore a una decina di metri, questo ha vanificato tale possibilità di misura, mentre è stato possibile misurare e con estrema chiarezza l'attenuazione dei muoni.
Il fronte del ghiacciaio del Rodano.
Un primo test sulle variazioni dei muoni rispetto all'altitudine è stato eseguito durante il trasferimento dal passo del Grimsel (2100 m) scendendo a Gletsch (1750 m) e risalendo al passo del Furka (2400 m). Il profilo della media mobile del rate di muoni misurato procede di pari passo al profilo di altitudine misurato dal data logger GPS.
Anche il rate dei segnali gamma assume un andamento in aumento con l'aumentare dell'altitudine. Questo è abbastanza normale se si considera che la radiazione cosmica aumenta con più si sale di quota. In realtà questi dati fanno parte di quello che si può considerare il rumore di fondo del rivelatore e saranno utili da confrontare quando il rivelatore sarà immerso sott'acqua.
Misure di raggi cosmici a confronto con l'altitudine.
In alto a sinistra il profilo di quota (l'altitudine varia da 2100 a 1700 e poi a 2400 metri), a destra il percorso effettuato; sotto a sinistra in blu i muoni e a destra in rosso i segnali dagli sciami di raggi gamma.
Misure nel Ice Grotto
Un secondo test - quello più interessante - è stato eseguito a partire dal parcheggio attinente all'entrata del "Ice Grotto" (rivelatore in spalla) fino alla parte più interna della grotta dove è rimasto in funzione per circa mezz'ora per poi tornare a cielo aperto, sempre in funzione.
Misure di raggi cosmici sotto al ghiacciaio.
Lo spessore di ghiaccio sovrastante varia da 10 fino a 20 metri.
Il risultato come preannunciato è sbalorditivo, l'intensità dei raggi gamma come previsto è assente, mentre l'attenuazione dei muoni (di bassa energia) è evidente; all'interno del grotto i muoni calano vistosamente, il rapporto di attenuazione è del 47% rispetto all'esterno, quindi il calo è quasi del -53%.
Misure di raggi cosmici sotto al ghiacciaio.
Lo spessore di ghiaccio sovrastante varia da 10 fino a 20 metri.
Vista del ghiacciaio dal Klein Furkahorn e misure di raggi cosmici sotto al ghiacciaio.
Videoclip
Ora non rimane altro che organizzare l'esperimento target di questo rivelatore, ovvero le misure a immersione sotto la superficie di qualche lago, ma ancora data e luogo sono da pianificare...
M.A.
Esplorare l'Interazione dei Raggi Cosmici con l'Acqua
Utilizzando un Rivelatore Old-Style e il Metodo di Rossi 30.08.2023
In un lavoro di mesi, anzi diciamo anni, abbiamo osservato e provato che i raggi cosmici anche nell'acqua si moltiplicano e creano sciami di elettroni e fotoni. Miliardi di queste perticelle colpiscono l’acqua in ogni istante. L'osservazione delle cascate elettromagnetiche nell'acqua ha implicazioni significative per l'astrobiologia. Questi tipi di esperimenti enfatizzano il potenziale ruolo delle radiazioni ionizzanti ad alta energia nell'origine e nell'evoluzione della vita sulla Terra e possibilmente su altri pianeti.
Pubblicato su: Particles 2023, 6(3), 801-818; https://doi.org/10.3390/particles6030051
Energia gamma proveniente dal Sole superiore alle previsioni
Gli scienziati hanno scoperto che il Sole emette raggi gamma con energie superiori a 1 teraelettronvolt (TeV), cioè cinque volte più energetici di quanto precedentemente ritenuto. Nel 2011, il Telescopio Spaziale Fermi per i Raggi Gamma della NASA aveva rilevato raggi gamma fino a 200 giga elettronvolt (GeV), ma l'Osservatorio Cherenkov ad Alta Quota (HAWC) ha rivelato raggi gamma ancora più energetici nell'intervallo di TeV, con alcuni che raggiungono quasi 10 TeV. Questa scoperta inaspettata evidenzia la nostra scarsa comprensione sulla produzione di raggi gamma da parte del Sole, e ulteriori ricerche indagheranno sui meccanismi con cui il Sole genera tali raggi gamma ad alta energia e sul possibile ruolo del suo campo magnetico...
Osservatorio High-Altitude Water Cherenkov Observatory (HAWC)
Fonte PRL
FLOTUS (11.08.2023)
All'esperimento CLOUD al CERN è stato aggiunto un nuovo modulo chiamato FLOTUS. Questo permette di studiare fenomeni atmosferici più complessi accelerando l'ossidazione dei vapori organici prima di iniettarli nella camera a nebbia di CLOUD. L'esperimento CLOUD studia le interazioni tra i raggi cosmici (simulati da un fascio di pioni dal PS) e le particelle di aerosol presenti nella troposfera terrestre (lo strato più basso dell'atmosfera) per comprendere meglio i meccanismi in gioco nella formazione degli aerosol e delle nubi che essi seminano. Dalla rivoluzione industriale, le attività umane hanno aumentato significativamente la quantità di particelle di aerosol nell'atmosfera, ma rimangono persistentemente incerte nei modelli climatici globali, dando origine a un'ampia gamma di proiezioni del riscaldamento climatico...
Fonte: CERN
Accedi | Registrati